
Analysis and Implementation of a Semantic
Auto-Encoder for Zero-Shot Learning

1st Arpad Voros
Department of Electrical Engineering

North Carolina State University
Raleigh NC, USA
aavoros@ncsu.edu

Abstract—A semantic auto-encoder (SAE) utilizes the encoder-
decoder paradigm to be employed in zero-shot learning (ZSL)
for latent space projection and feature space reconstruction. In
this document, a SAE is used to perform ZSL and classification
on a handwritten character dataset. The last feature layer of
a classification model is projected into latent space using a
respective SAE and the resulting projection is used as a new
baseline for classification. Features of a single unseen datapoint
of each unseen class are projected into the latent space and
used as the reference for classifying all other unseen datapoints
to perform ZSL and classification. A rudimentary decoder is
incorporated to enhance visual understanding of the latent space
representation of each datapoint and a proposition is made
further the effort in incorporating SAE into an unsupervised
learning setting.

I. INTRODUCTION

Zero-shot learning (ZSL) has been an area of growing
interest in deep learning the past decade, where a models
ability to predict classes, previously unseen to the model, is
enhanced after the official training phase. Though there are
various methods to implement ZSL, the one chosen for this
independent study was a semantic auto-encoder (SAE) [1]
due to its simplicity and computational efficiency. Inspired by
the usage of the Omniglot dataset in a paper using Siamese
neural networks to perform one-shot learning [2], a similar
handwritten character-set is utilized from NIST to implement
a SAE for zero-shot classification (ZSC).

The purpose of this study is to analyze the benefits and
downsides of using a SAE and to potentially exploit a SAE for
cluster analysis in the latent space. Currently, SAE can be used
for ZSC by minimizing the k-dimensional Euclidean distance
in the latent embedded space between an embedded input to
multiple reference points of known classes. However, it will
be further emphasized that this is not zero-shot “learning”
since the current model can not be improved with SAE1.
Rather, the classification model stays stagnant while the SAE
is utilized in junction for one-time computations of classes
which are known to be unknown to the classification model.
It is believed that SAE has large potential in applications such
as unsupervised learning without any training on the original
classifier, which is discussed more in the Future Work section.

1As interpreted by the authors definition of ZSL. A model should be able
to improve itself and flexibly incorporate unseen classes rather than use it as
a parasitic building block for temporary modular components respective to
each new classification.

It is planned to have a continuation of this study, as this
document merely serves as an official documented point of
progress in the author’s personal ambitions of exploring ZSL.

II. METHODOLOGY

A. Semantic auto-encoder

The idea behind the proposed SAE by Kodirova, Xiang, and
Gong [1] is using a linear auto-encoder to project an input data
vector from the feature space into a k-dimensional latent space
using a projection matrix. Likewise, another projection matrix
is used to return back from the latent space to the feature
space. This can be formulated by minimizing the following

min
W, W∗

||x−W∗Wx||2 (1)

where x ∈ Rd×1 is the input, W ∈ Rk×d and W∗ ∈ Rd×k

are the respectively latent and feature projection matrices,
and the embedded latent space vector s ∈ Rk×1 is cal-
culated by Wx. The vectors can be extended into matrices(
X ∈ Rd×N and S ∈ Rk×N

)
to include multiple (N) data-

points. Similarly, S now equals WX. The latent space to
feature space projection matrix W∗ is proposed to be W⊤ and
a computationally efficient derivative calculation is derived

AW + WB = C (2)

where A = SS⊤, B = λXX⊤, C = (1 + λ)SX⊤, and λ is
a weighting coefficient [1]. In turn, W can be solved using
the sylvester equation using MATLAB, and this SAE
algorithm from (2) can be recursively called to calculate a
projection matrix which minimizes the error between X and
X̂ = W⊤S = W⊤WX.

B. Incorporation for zero-shot classification

Given the set of all classes Ω, each trained class t belong
in the set T and each untrained class u belong in the set U ,
where T and U are subsets of Ω. It is implied that for a
practical application, T ∪U = Ω. The evaluation metric used,
unless otherwise stated, is a k-dimensional Euclidean distance
of the latent space projection ∀s ∈ S with respect to some
reference Sref. It should be noted that set notation on matrices
(e.g. s ∈ S) refers to each element s of set S is a row-wise
vector of the matrix S.

For all unknown classes U , single instance of the class is
used as the reference for classification. Meaning, given the
evaluation metric, the closer the selected reference datapoint is
to the average of all data within that class, the better chance it
has at being in the “center” of the latent cluster, thus resulting
in a better classifier. If an outlier (visually irregular / distorted
handwritten character) is selected to represent the ‘semantic
baseline’ for all further ZSC’s using SAE, the worse the
classification accuracy. For all known classes T , an average
of all datapoints of like-classes within the latent space is used
as the semantic baseline.

A well-trained classifier using deep learning architecture to
extract spatial characteristics, such as 2-dimensional convolu-
tional neural networks (CNNs), can be utilized to streamline
the efficiency and accuracy of an SAE. Utilizing the activations
of the final convolutional layer of a classifier (trained only on
datapoints in classes T) the features can be encoded w.r.t.
their one-hot classification labels using a projection matrix
Wl to be fed through an SAE. The latent space encoding for
trained data ST is initialized randomly and fed through SAE to
determine the first latent projection matrix W. The projection
matrix is reused to calculate ST = WXT . Once a near-zero
error is reached for the iterative calculation of W, the means
of each latent cluster to be used as classification references
are determined by

ST = WXT (3)

where
Xc = Wl

(
layerf

{
Xinput

c

})
(4)

where c is placeholder for class-type (i.e. U , T , etc.),
layerf {G} are the activations of a feature layer within the
classification network given inputs G, and

Sref
T (m) =

∑
tm∈T

Stm

|tm|
(5)

where m = (0, 1, . . . , |T |), ∀ ∪ tm = T , and |tm| represents
the number of data elements within class tm. It should be
noted that the averaging done on the r.h.s. of (5) could derive
the unexisting reference datapoints indicated by Xref

T∗ (T ∗ since
the datapoint itself is unlikely to be in the set of T unless there
only exists one data element for a given class).

One sample for each class of U (|U | samples) produce our
reference matrice Xref

U . The untrained datapoints XU is updated
by removing the selected elements in the reference set Xref

U and
used to calculate the semantic baseline, Sref

U , to represent the
center of the latent space encoding their respective classes

Sref
U = WXref

U (6)

and similarly
SU = WXU (7)

The semantic baseline references Sref
T for trained datapoints

and Sref
U for untrained datapoints are now used to map the

semantic evaluations of ST and SU onto U , T , and Ω based
off the k-dimensional distance between each element of Sc

w.r.t. some reference Sref
c .

Fig. 1: Model architecture

Sref
U is used to map results to U , Sref

T is used to map results
to T , and Sref

U concatenated with Sref
T is used to map results to

Ω for classification.
A decoder is implemented independently from the ZSC

algorithm described above to visualize the semantic references
in the visual space. This is used to get a rough idea on how the
linear combination of the closest known labels can ‘construct’
a never-seen-before class. In this report, the implemented
decoder does not use the activations of the last feature layer
of the classifier, but only the feature-label encoded variables
Xc. In Future Work it is discussed how using x ∈ X as well
as a constant Wl as inputs to the decoder network, better
reconstruction can be achieved.

III. IMPLEMENTATION

The data used in this study consists of alphanumeric char-
acters (0 through 9 and uppercase A through Z) are used
from the original MNIST digit dataset [3] and the uppercase
portion of the EMNIST dataset [4]. It should be noted this
study uses a combined number of 35 classes instead of 36
to account for the similarity between 0 and an uppercase O.
The data is converted to a binary format, where the threshold
is half of the maximum value of the data/datatype (e.g. 0.5
if [0, 1], 127 if uint8, etc.). This was not only done for
decreasing storage dependency and increasing computational
efficiency, but also for future incorporation of the Omniglot
dataset, which consists only of binary data. More on this in
Future Work.

All the networks were constructed using MATLABs deep
learning library. A set number of classes are selected for

the seen and unseen datasets respectively. The classes are
selected at random, and the datasets as well as labels are split
accordingly.

The model architecture can be seen in Figure 1. The
classifier was trained using the seen dataset and labels until
a sufficiently high validation accuracy is reached. The activa-
tion’s for the last hidden layer are extracted and used as inputs
for the SAE. In theory, any feature layer can be selected, even
the raw input. However, due to the nature of CNN classifiers,
the hidden layers closer to the output embed more ‘feature’
information rather than spatial/temporal information. This can
decrease iterations of the SAE in finding the latent projection
matrix W.

The latent space representations of data to be evaluated
compute a k-dimensional Euclidean distance between itself
and semantic baselines for different class sets given by Sref

c .
In this study, k was limited to 256, though k ∈ N. In addition,
the parameter λ was usually 1.

The decoder used a transposed CNN architecture to decode
feature-label space data X̂c = W⊤WWl

(
layerf

{
Xinput

c

})
for

visuals only. This is intended to be used as a precursor to
generative modeling as well as unsupervised learning (see
Future Work), but for the time being the decoder is included
purely for cosmetic purposes.

IV. RESULTS

Run |U | / |Ω| % Trained ZSC Mapping Top 1 Top 3
R0 9 / 35 82.60 SU −→ U 83.8 97.0
R0 9 / 35 82.60 SU −→ Ω 17.0 72.1
R0 9 / 35 82.60 ST −→ T 93.3 99.3
R0 9 / 35 82.60 ST −→ Ω 92.1 98.9
R0 9 / 35 82.60 SΩ −→ Ω 84.2 96.7
R1 23 / 35 42.04 SU −→ U 53.8 81.1
R1 23 / 35 42.04 SU −→ Ω 23.4 70.2
R1 23 / 35 42.04 ST −→ T 96.3 99.8
R1 23 / 35 42.04 ST −→ Ω 90.8 98.7
R1 23 / 35 42.04 SΩ −→ Ω 54.5 83.7

TABLE I: ZSC Accuracy from the A-Z, 0-9 MNIST dataset

Two runs were completed with a different number of
trained classes in each. Both require separate classifiers, SAE
projection matrices, as well as decoders. The first run trained
the model with a randomly selected majority (26 / 35) of all
classes (82.60% of data), leaving 9 unseen classes: U = { 2,
6, 7, 9, E, L, V, W, Y }. The second run trained the model with
a randomly selected minority (12 / 35) of all classes (42.04%
of data), leaving 23 unseen classes: U = { 0 or O, 1, 2, 3, 4,
6, 7, 8, A, B, D, E, H, I, J, K, L, M, P, V, W, X, Y }

The bolded accuracies do not refer to the best results, since
there is no other ZSL model being compared. Rather, the
bolded accuracies refer to results of interest. The first row
w.r.t. each run in Table I refer to the evaluation metric used by
Kodirova, Xiang, and Gong [1], where only latent embedded
datapoints from unseen classes SU are evaluated by mapping
the likelihood of sU being in the set of unseen classes U .
However, this is only realistic in an application in which a
new class (known to applicant of the model and unknown to
the model) is introduced to the model, and only new classes

Fig. 2: R0: SU → U for 9 unseen + 26 trained classes

Fig. 3: R1: SU → U for 23 unseen + 12 trained classes

can be evaluated and classified as elements of U . This is
unrealistic, because it implies that a different method of
classification (semantic baseline Sref

c) is used in regards to the
class type c of the input data. This further implies that the
applicant must differentiate and separate Xinput

Ω into Xinput
T and

Xinput
U for evaluation. A better approach would be updating

the model to incorporate U so that an overarching semantic
baseline of Sref

Ω can map any latent embedded input data SΩ

onto Ω for classification. This metric is used to represent
applications in which a model needs to blindly evaluate some
data ∈ Ω after being introduced to U . The ZSC accuracies for
this mapping is the last row w.r.t. each run in Table I.

It can be observed that the accuracies for classifying unseen
classes of R0 performed significantly better than R1 due to
R0’s exposure to more classes. There was a 83.8% Top 1
classification rate for unseen classes in R0 when restricting
the classification domain to U seen in Figure 2. There was a
53.8% Top 1 classification rate for unseen classes in R1 when
restricting the classification domain to U seen in Figure 3.
Both Figures 2 and 3 evaluate randomly selected xinput

U ∈ Xinput
U

of runs R0 and R1, respectively. Refer to Tables II and III for
the ranked distributions of Top 1 classifications.

It should be noted that all mapping accuracies incorporating
U (all except ST → T) depend on the selection of semantic
baselines of unseen classes Sref

U . Since the baselines were
chosen at random, there exists a Sref

U which can yield a better
or worse accuracy in each category. Demos of the results
with data and algorithms can be found at https://github.com/
arpadav/zsl sae matlab

A decoder was used for visualization only gain greater
insight about the latent space as well as how the model and
SAE perform. Figure 4 shows U on the left half and T on the
right half with the following information:

• U :
– Xref, input

U - The input image (used as the semantic
baseline for the given unseen class)

– layerf
{

Xref, input
U

}
reconstructed through feature de-

coder - The features of the input image (used as
the semantic baseline for the given unseen class)
reconstructed through a feature decoder

– Xref
U reconstructed through decoder - The latent space

baseline for the given unseen class, transformed out
of latent space and reconstructed through a decoder.

– Random xU reconstructions through decoder - the
higher similarity to baseline means higher chance
corrent classification.

• T :
– Xref, input

T∗ - Not possible to reconstruct
– layerf

{
Xref, input

T∗

}
- Not possible to reconstruct

– Xref
T reconstructed through decoder - The latent space

baseline for the given seen class, transformed out of
latent space and reconstructed through a decoder.

– Random xT reconstructions through decoder - the
higher similarity to baseline means higher chance
corrent classification.

Fig. 4: Reconstruction of R0 classes. U on left, T on right

Fig. 5: Bilinear interpolation in different spaces for T of R0

Figure 5 shows bilinear interpolation of the sampled char-
acters in { 3, G, 8, S } ⊂ T in run R0. Top left of Figure
5 shows what this looks like in the spatial domain, where
the drawings fade into one another. Top right of Figure 5
shows interpolation in the latent space and then reconstructed.
Bottom right of Figure 5 shows interpolation in the one-hot

https://github.com/arpadav/zsl_sae_matlab
https://github.com/arpadav/zsl_sae_matlab

encoded space (transformed by projection matrix Wl), which
looks near-identical to interpolation in the latent space. Bottom
left of Figure 5 shows interpolation of the features given by
the activations of the feature layer, decoded through a different
(feature) decoder.

It can be seen that there is a significant amount of informa-
tion loss when transforming the feature space representation
using projection matrix Wl (addressed in Future Work), since
Wl is optimized to minimize the error between the features
of classes in T and the respective one-hot encodings which
represent T .This means that decoding using any stage after
the transformation of Wl results in information only given
by this ‘label’ space. This shows how SAE is powerful when
coming to classification, but it severely lacks potential when
it comes to ZSL generative tasks in its current state.

V. FUTURE WORK

For unsupervised learning, the definition of T ∪ U = Ω
is inaccurate in describing the current system. It is unknown
whether the addition of the set of untrained classes U com-
pletes the set Ω. Rather, it can be formulated that the only
information the applicant as well as the model have to work
with is T ∪ U∗ ⊆ Ω, where U∗ ⊆ U and U∗ is the observed
set of classes unseen by the model. The model must be able
to interpret any new u∗ ∈ U∗ and perform the merging of sets
T ← T ∪ U∗. Note that this does not mean the model must
retrain using traditional training methods, it simply means the
model must account for unseen classes with a high enough
accuracy to be considered on-par with T using some ZSL
method.

As mentioned throughout the report, there is a significant
amount of information lost when embedding the features of
the input images in the latent space to extract some semantic
meaning. This is because implementation of the SAE works in
a rigid manner where the T (and therefore |T |) stays constant,
and there is a increased emphasis on ZSC rather than ZSL.
Therefore, I would like to further analyze the mathematics
to formulate a method which incorporates SAE in the one-
shot updating of the weights and biases after the feature layer.
The key components at play are projection matrix Wl, latent
space projection matrix W, and the final dense layer of the
network. Wl correlates feature information with classification
information, and W inherently portrays information about how
any input is interpret ted as a linear combination of the known
outputs. Given a new class, the k-Euclidean distance evalu-
ation used for SAE can give enough statistically significant
information that a new class is present. Therefore, action can
be taken in updating the classification layer to include the extra
class, and SAE can be rerun to incorporate the newly added
class. This can easily be done, it’s just a question of which
methods yield the ‘proper technique’.

As stated in the paragraph above, the information loss
resulting in the heavy emphasis on classification using the
naı̈vely implemented SAE means the trained decoder has
no feature information to work with. Since this decoder is
essentially using one-hot labels as inputs and a vast number

of intricate outputs, it’s by no surprise that it does such a poor
job in reconstructing never-seen-before classes in an accurate
manner. Rather than training a decoder with only XT or ST as
inputs, I would like to incorporate Wl as a constant input to the
decoder. This provide the decoder with feature transformation
information in an attempt to pseudo-reverse the transformation
by means of deep learning. Once back in the feature domain
(though different than the original one) the decoder can be
more successful in reconstruction (as seen by the feature-only
decoder in left-most columns of Figure 4 and the lower right
of Figure 5). This will increase the robustness of the decoder,
which can allow for generation of never-seen-before classes
embedded within the learned latent-space without any prior
reference or observation.

Lastly, this study plans to continue with expanding the
dataset to include the Omniglot dataset. There is a signficant
increase in the number of classes with overwhelmingly less
individual datapoints within each class. This makes it an ideal
candidate to test ZSL methods.

VI. ACKNOWLEDGMENT

Special thanks to Dr. Tianfu (Matt) Wu for overseeing this
study and introducing me to the topic of ZSL.

REFERENCES

[1] E. Kodirova, T. Xiang, and S. Gong, “Semantic autoencoder for zero-shot
learning,” IEEE CVPR 2017, July 2017.

[2] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” 2015.

[3] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[4] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension

of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373, 2017.

Character 1st % 2nd % 3rd % 4th % 5th % Rank
U 2 Z 43.46 3 20.17 J 9.99 Q 8.60 8 6.29 7
U 6 6 40.68 G 34.48 B 5.10 1 4.99 8 4.99 1
U 7 7 41.89 4 24.24 9 12.99 3 8.14 1 6.14 1
U 9 4 52.21 9 38.29 8 2.90 Q 2.64 3 1.62 2
U E E 34.84 F 22.38 G 14.87 C 7.17 Z 6.21 1
U L L 55.25 Z 14.24 1 10.80 I 6.99 C 5.76 1
U V U 49.57 V 29.22 Y 8.78 K 3.08 N 3.04 2
U W W 58.18 U 23.11 N 13.87 H 1.34 M 1.06 1
U Y Y 36.11 X 31.65 1 11.40 4 3.72 P 3.46 1
T 0 or O 0 or O 86.63 D 9.29 Q 2.06 6 0.84 B 0.26 1
T 1 1 98.67 I 0.36 J 0.32 3 0.23 4 0.18 1
T 3 3 97.94 J 0.52 B 0.35 8 0.34 5 0.21 1
T 4 4 95.05 H 1.77 U 1.17 A 0.92 1 0.34 1
T 5 5 92.76 S 3.17 3 0.82 J 0.71 8 0.65 1
T 8 8 94.30 B 3.59 1 0.31 9 0.29 P 0.25 1
T A A 97.56 H 0.69 R 0.40 M 0.37 1 0.26 1
T B B 97.25 8 0.95 3 0.62 R 0.23 A 0.20 1
T C C 95.79 L 1.91 G 0.75 T 0.23 U 0.21 1
T D D 96.10 J 1.07 B 0.84 0 or O 0.35 M 0.22 1
T F F 99.66 J 0.17 G 0.09 T 0.09 - - 1
T G G 96.23 B 1.09 Q 0.90 6 0.24 C 0.23 1
T H H 95.28 4 1.05 N 0.96 A 0.57 K 0.47 1
T I I 96.70 J 2.14 1 0.45 2 0.27 Z 0.18 1
T J J 96.61 T 1.20 1 0.58 U 0.29 I 0.26 1
T K K 96.98 X 0.86 H 0.70 R 0.45 1 0.14 1
T M M 98.14 H 1.00 N 0.34 A 0.21 W 0.12 1
T N N 95.18 W 1.98 H 0.76 M 0.44 J 0.26 1
T P P 96.72 D 0.68 F 0.52 1 0.38 R 0.37 1
T Q Q 96.20 P 0.71 9 0.65 G 0.58 R 0.57 1
T R R 94.71 A 1.54 K 0.99 B 0.42 Q 0.41 1
T S S 87.31 5 7.90 J 2.83 G 0.52 8 0.39 1
T T T 97.95 F 0.72 1 0.33 7 0.17 4 0.12 1
T U U 97.29 4 0.57 M 0.26 H 0.23 W 0.21 1
T X X 96.38 K 2.23 Y 0.32 Z 0.24 R 0.18 1
T Z Z 97.78 2 0.66 3 0.25 I 0.21 X 0.18 1

TABLE II: R0 Top 1 SΩ → Ω classifications rates for all available data

Character 1st % 2nd % 3rd % 4th % 5th % Rank
U 0 or O Q 45.26 0 or O 25.25 C 13.87 2 2.73 G 2.39 2
U 1 1 66.97 7 17.34 T 9.90 Y 1.55 L 0.83 1
U 2 Z 67.17 3 8.48 2 8.15 Q 4.98 L 1.53 3
U 3 5 35.79 Z 28.15 3 23.25 9 4.89 S 2.51 3
U 4 9 60.73 Y 6.81 8 6.42 4 6.14 W 5.04 4
U 6 6 33.58 G 33.01 5 18.94 8 8.93 U 1.02 1
U 7 9 73.10 7 23.52 Z 1.52 T 0.44 1 0.40 2
U 8 5 30.84 9 20.41 B 13.58 8 8.64 3 6.21 4
U A R 40.51 K 23.13 P 10.14 A 8.99 G 4.74 4
U B B 37.49 G 24.93 Z 6.95 K 6.63 R 5.61 1
U D Q 29.57 D 14.67 2 13.29 Z 10.92 3 6.65 2
U E F 33.65 C 18.95 G 17.91 B 8.27 Z 6.31 8
U H H 34.37 M 14.87 N 13.22 X 11.93 K 8.09 1
U I Z 45.80 I 28.39 3 9.20 J 8.12 L 4.02 2
U J J 26.03 I 21.16 3 13.91 S 11.87 L 11.29 1
U K R 36.64 K 25.41 A 15.65 X 13.33 C 1.89 2
U L C 55.45 L 22.15 Z 14.85 E 1.78 R 1.23 2
U M N 55.71 M 19.31 H 8.93 X 5.16 T 3.27 2
U P F 57.94 P 24.96 T 11.19 R 1.49 Q 0.99 2
U V W 30.34 U 23.41 Y 18.84 V 18.20 N 6.98 4
U W W 43.27 H 34.58 N 16.74 V 1.83 M 1.21 1
U X X 66.85 N 4.74 Y 4.42 K 4.24 M 3.84 1
U Y 1 32.78 T 30.54 Y 16.23 N 5.00 4 2.21 3
T 5 5 89.88 S 5.58 8 2.96 9 0.98 6 0.17 1
T 9 9 97.97 5 0.79 4 0.43 S 0.23 8 0.13 1
T C C 98.39 G 0.67 E 0.21 F 0.15 Z 0.10 1
T F F 99.40 G 0.17 S 0.17 T 0.17 I 0.09 1
T G G 98.16 6 0.26 C 0.24 4 0.16 Q 0.16 1
T N N 96.51 H 2.37 X 0.23 M 0.19 Z 0.08 1
T Q Q 94.98 G 2.32 P 0.58 4 0.41 0 or O 0.36 1
T R R 94.48 A 1.31 P 1.19 K 1.07 C 0.43 1
T S S 96.54 5 1.68 3 0.70 G 0.41 J 0.24 1
T T T 98.87 F 0.51 1 0.16 I 0.14 Z 0.10 1
T U U 91.30 V 3.03 Y 2.45 W 2.13 E 0.17 1
T Z Z 99.18 T 0.25 L 0.23 2 0.08 3 0.07 1

TABLE III: R1 Top 1 SΩ → Ω classifications rates for all available data

	Introduction
	Methodology
	Semantic auto-encoder
	Incorporation for zero-shot classification

	Implementation
	Results
	Future Work
	Acknowledgment
	References

